Reaction of a Stable Silylene with Covalent Azides: A New Synthesis for Silaimines

Michael Denk, ${ }^{*}{ }^{\dagger}$ Randy K. Hayashi, and Robert West
Department of Chemistry, University of Wisconsin 1101 University Avenue Madison, Wisconsin 53706

Received April 29, 1994
Compounds with double bonds to silicon were first described in 1981, when the use of bulky substituents on silicon allowed the isolation of compounds with stable $\mathrm{Si}=\mathrm{Si}^{1}$ and $\mathrm{Si}=\mathrm{C}^{2}$ double bonds. Research on these highly reactive compounds continues unabated and has led to compounds with stable double bonds $\mathrm{Si}=\mathrm{E}$ where $\mathrm{E}=\mathrm{Ge},{ }^{3} \mathrm{~N},,^{4} \mathrm{P},{ }^{5}$ and $\mathrm{As}{ }^{6}$ and S . ${ }^{7}$

The synthesis of 1,3-di-tert-butyl-2,3-dihydro-1 H -1,3,2-dia-zasilol-2-ylidene (1, LSi:), a stable silylene, ${ }^{8}$ opens new possibilities for the synthesis of doubly bonded silicon compounds. ${ }^{9}$ We now report on the formation $\mathrm{LSi}(\mathrm{THF})=\mathrm{NC}(\mathrm{Ph})_{3}$ (4), a stable silaimine, from $\mathrm{LSi}(\mathbf{1})$ and $\mathrm{Ph}_{3} \mathrm{CN}_{3}$.

Although a large number of stable germaimines has been obtained from germylenes and azides, ${ }^{10}$ examples of stable silaimines are still rare. The first silaimines were obtained by N. Wiberg et al. in 1986 by thermal salt elimination and have been structurally characterized. ${ }^{4}$
The reaction of 1 with the covalent azides $\mathrm{Me}_{3} \mathrm{SiN}_{3}$ and $\mathrm{Ph}_{3}-$ CN_{3} resulted in rapid evolution of nitrogen. The temperatures needed for the reaction reflect the relative reactivity of 1 toward the two different azides (see Scheme 1).

Reaction of 1 with $\mathrm{Ph}_{3} \mathrm{CN}_{3}$ resulted in the clean formation of the silaketimine 4 , stabilized by a THF molecule coordinated to silicon. ${ }^{11}$ Use of the less hindered trimethylsilyl azide did not result in formation of the analogous silaimine 2. Instead, the silaimine is trapped by the addition of a second equivalent of azide resulting in the formation of $3 .{ }^{11}$ No formation of 2 could be detected by NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{29} \mathrm{Si}\right)$ of the crude reaction mixture.

[^0]

Figure 1. 1. Molecular structure of ($\left.{ }^{(} \mathrm{BuNCH}=\mathrm{CHN}^{\top} \mathrm{Bu}\right) \mathrm{Si}\left(\mathrm{N}_{3}\right) \mathrm{N}$ $\left(\mathrm{SiMe}_{3}\right)_{2}$ (3). ${ }^{12}$ ORTEP view with hydrogen atoms omitted for clarity. Thermal ellipsoids are at the 50% probability level. Selected bond distances (pm) and bond angles (deg) are as follows: $\mathrm{Si}(1)-\mathrm{N}(1)$ 172.8(2), $\mathrm{Si}(1)-\mathrm{N}(2) 170.4(3), \mathrm{Si}(1)-\mathrm{N}(3) 176.0(3), \mathrm{N}(1)-\mathrm{C}(1) 141.6(3)$, $\mathrm{C}(1)-\mathrm{C}(1 \mathrm{~A}) 133.0(5), \mathrm{N}(1)-\mathrm{C}(1) 141.6(3), \mathrm{N}(2)-\mathrm{Si}(2) 178.1(3)$, $\mathrm{N}(2)-\mathrm{Si}(3) 177.2(3), \mathrm{N}(3)-\mathrm{N}(4) 121.9(5), \mathrm{N}(4)-\mathrm{N}(5) 112.8(5), \mathrm{N}(1)-$ $\mathrm{Si}(1)-\mathrm{N}(1 \mathrm{~A}) 92.9(1), \mathrm{N}(1)-\mathrm{Si}(1)-\mathrm{N}(2) 120.1(1), \mathrm{N}(1)-\mathrm{Si}(1)-\mathrm{N}(3)$ $112.1(1), N(2)-\operatorname{Si}(1)-N(3) 100.2(1), \mathrm{Si}(2)-N(2)-\operatorname{Si}(3) 118.9(2)$, $\mathrm{Si}-$ (1) $-N(2)-\operatorname{Si}(3) 117.9(2), S i(1)-N(3)-N(4) 124.5(3), N(3)-N(4)-$ $\mathrm{N}(5) 174.8(4)$.

Scheme 1. Reaction of the Stable Silylene 1 with Covalent Azides

The structures of 3 and 4 were established by single-crystal X-ray crystallography. ${ }^{12}$ In 3, both $N(1)$ and $N(2)$ are in planar coordination; the azide and the bis(trimethylsilyl)amino group are coplanar with the plane of symmetry bisecting the fivemembered ring. The tert-butyl groups are slightly tilted toward the azide group, out of the plane defined by the $\mathrm{N}_{2} \mathrm{Si}$ ring fragment (torsion angle $\left.\mathrm{N}(1 \mathrm{a})-\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{C}(2),-177.0(2)^{\circ}\right)$, and the $\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{Si}$ ring is slightly puckered (torsion angle $\mathrm{N}(1 \mathrm{a})-$ $\left.\mathrm{Si}(1)-\mathrm{N}(1)-\mathrm{C}(1) 2.0(2)^{\circ}\right)$.

The short $\operatorname{Si}(1)-N(3)$ bond (159.9 pm) shows 4 to be a silaimine stabilized by the donor molecule THF. The $\mathrm{Si}=\mathrm{N}$ distance is similar to that reported ${ }^{4}$ for $\mathrm{Me}_{2} \mathrm{Si}(\mathrm{THF})=\mathrm{NSi}(\mathrm{tBu})_{3}$ (6 , two crystallographically independent molecules, $\mathrm{Si}=\mathrm{N}$: $158.8(9) / 157.4(10) \mathrm{pm})$. The $\mathrm{Si}-\mathrm{O}$ distance, however, is significantly shortened in 4 (181.5(3) pm as compared to 188.8 (8)/186.6(8) pm). This suggests that THF is more strongly coordinated in 4 than in 6 and could explain why we have been unable to obtain the donor-free silaimine 5 from 4.

The two endocyclic nitrogen atoms in 4 are planar (the sum of the bond angles is 360°). The geometry of the five-membered $\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{Si}$ ring is best described as an envelope conformation with the Si atom tilted off the $\mathrm{C}_{2} \mathrm{~N}_{2}$ plane. Although $\mathrm{Si}(1)$ is clearly tetracoordinate, its coordination by the three nitrogen atoms is close to planar (the sum of the bond angles is 350°).

Figure 2. 2. Molecular structure of ($\left.{ }^{(\mathrm{BuNCH}}=\mathrm{CHN}{ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{Si}=\mathrm{NC}\left(\mathrm{Ph}_{3}\right)^{-}$(THF). ${ }^{12}$ ORTEP view with hydrogen atoms omitted for clarity. Thermal ellipsoids are at the 50% probability level. Selected bond distances (pm) and bond angles (deg) are as follows: $\mathrm{Si}(1)-\mathrm{N}(1) 173.5(3), \mathrm{Si}(1)-$ $\mathrm{N}(2)$ 173.6(3), $\mathrm{Si}(1)-\mathrm{N}(3) 159.9(4), \mathrm{Si}(1)-\mathrm{O}(1) 181.5(3), \mathrm{N}(3)-\mathrm{C}(15)$ 144.4(6), C(5)-C(6) 133.4(6), C(5)-N(1) 140.0(5), C(6)-N(2) 141.0(5), $\mathrm{N}(1)-\mathrm{Si}(1)-\mathrm{N}(2)$ 91.8(2), $\mathrm{Si}(1)-\mathrm{N}(3)-\mathrm{C}(15) 134.6(2), \mathrm{O}(1)-$ $\mathrm{Si}(1)-\mathrm{N}(3) 98.2(1), \mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{N}(2) 100.4(2), \mathrm{O}(1)-\mathrm{Si}(1)-\mathrm{N}(1)$ $103.5(2), \mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Si}(1) \quad 131.3(2), \mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Si}(1) 109.5(3)$, $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1) 119.0(3)$.

Acknowledgment. M. Denk is grateful to the Alexander-von-Humboldt Stiftung for a fellowship.

Supplementary Material Available: Tables of atomic coordinates, thermal parameters, and further details on the
crystallography of 3 and 4 (25 pages); listing of observed and calculated structure factors for 3 and 4 (14 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^1]
[^0]: ${ }^{\dagger}$ New address: Indiana University-Purdue University at Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202-3274. e-mail: DENK@CHEM.IUPUI.EDU.
 (1) West, R.; Fink, M. J.; Michl, J. Science 1984, 225, 1109.
 (2) (a) Brooke, A. G.; Nyburg, S. C.; Abdesaken, F.; Gutekunst, B.; Kallury, R. K. M. K. R.; Poon Y. C.; Chang, Y. M.; Wong-Ng, W. J. Am. Chem. Soc. 1982, I04, 566. (b) Brook, A. G.; Chu, P.; McClenaghnan, J.; Lough, A. J. Organometallics 1991, IO, 3292-3301. (c) Wiberg, N.; Wagner, G. Angew. Chem., Int. Ed. Engl. 1983, 22, 1005. (d) Wiberg, N.; Wagner, G. Angew. Chem., Int. Ed. Engl. 1985, 24, 229. (e) Wiberg, N.; Wagner, G.; Reber, G.; Riede, J.; Müller, G. Organometallics 1987, 6, 3541.
 (3) Baines, K. M.; Cooke, B. A.; Dixon, C. E.; Liu, H. W.; Netherton, M. R. Organometallics 1994, I3, 631-634.
 (4) (a) Wiberg, N.; Schurz, K.; Reber, G.; Müller, G. J. Chem. Soc., Chem. Commun. 1986, 591-592. (b) Wiberg, N.; Schurz, K.; Fischer, G. Angew. Chem. 1985, 97, 1058-1059. (c) Hesse, M.; Klingebiel, U. Angew. Chem., Int. Ed. Engl. 1986, 25, 649-650. (d) Wiberg, N.; Karampatses, P.; Kim, Ch.-K. Chem. Ber. 1987, I20, 1213.
 (5) (a) Smith, C. N.; Locke, F. M.; Bickelhaupt, F. Tetrahedron Lett. 1984, 25, 3011. (b) Smith, C. N.; Bickelhaupt, F. Organometallics 1987, 6, 1156. (c) Bastiaans, H. M. M.; Bickelhaupt, F.; van den Winkel, Y. Phosphorus, Sulfur Silicon Relat. Elem. 1990, 40/50, 333. (d) van den Winkel, Y.; Bastiaans, H. M. M.; Bickelhaupt, F. J. Organomet. Chem. 1991, 405, 183. (e) Driess, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 1022.
 (6) (a) Driess, M.; Pritzkow, H. Angew. Chem., Int. Ed. Engl. 1992, 31, 316-318. (b) Driess, M.; Pritzkow, H.; Sander, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 283-285.
 (7) Arya, P.; Boyer, J.; Carré, F.; Corriu, R.; Lanneau, G.; Lapasset, J.; Perrot, M. Priou, C. Angew. Chem. Int. Ed. Engl. 1989, 28, 1016-1018.
 (8) Denk, M.; Lennon, R.; Hayashi, R.; West, R.; Belyakov, A. V.; Verne, H. P.; Haaland, A.; Wagner, M.; Metzler, N. J. Am. Chem. Soc. 1994, II6, 2691-2692.
 (9) For the synthesis of the silylene complex $(\mathrm{LSi})_{2} \mathrm{Ni}(\mathrm{CO})_{2}$ from 1, see: Denk, M.; Hayashi, R. K.; West, R. J. Chem. Soc., Chem. Commun. 1994, 33-34.
 (10) (a) Ando, W.; Ohtaki, T.; Kabe, Y. Organometallics 1994, I3, 434435. (b) Rivière-Baudet, M.; Khallaayoun, A.; Satgé, J. Organometallics 1993, $12,1003-1005$ and references therein.

[^1]: (11) (a) Synthesis of 3: A solution of 1.45 g of $1^{8}(7.4 \mathrm{mmol})$ dissolved in 60 mL of THF was cooled to $-20^{\circ} \mathrm{C}$ and 2 equiv of $\mathrm{Me}_{3} \mathrm{SiN}_{3}$ (14.8 mmol, $1.71 \mathrm{~g}, 1.96 \mathrm{~mL}$) dissolved in 20 mL of THF was added over a period of 5 min . After stirring at room temperature for 24 h and removal of the solvent, the crude reaction product was sublimed at $80^{\circ} \mathrm{C} / 0.1 \mathrm{Torr}$; 2.09 g of pure $3(71 \%)$ was isolated as white needles. (b) Synthesis of 4: A solution of 1.45 g of $1^{8}(7.4 \mathrm{mmol})$ dissolved in 60 mL of THF was cooled to $-50^{\circ} \mathrm{C}$, and 1 equiv of $\mathrm{Ph}_{3} \mathrm{CN}_{3}(7.4 \mathrm{mmol}, 2.51 \mathrm{~g}$, Pfaltz \& Bauer T32438) dissolved in 20 mL of THF was added (5 min). After stirring at room temperature for 24 h and removal of the solvent, the crude reaction product was dissolved in 120 mL of n-hexanes. Cooling to $-10^{\circ} \mathrm{C}$ gave 2.53 g of pure $4(65 \%$). (c) Selected spectroscopic data: NMR data (in ppm and Hz) were recorded at room temperature in $\mathrm{C}_{6} \mathrm{D}_{6}$ solution at 200 $\mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 126 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, and $99.3 \mathrm{MHz}\left({ }^{29} \mathrm{Si}\right), 3$ 3: ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta 0.25+$ $0.34\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.27\left(18 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 5.67(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: $4.40+5.50\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 51.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 112.0(=\mathrm{CH}) . \delta$ 29Si: -46.9 (s). MS (40 eV , positive ions): 398 (70) [$\left.\mathrm{M}^{+}\right], 383$ (10), 341 (22), 309 (55), 286 (30), 57 (100), 41 (64), 28 (38). IR (Nujol): 2139 s , $1307 \mathrm{~m}, 1226 \mathrm{~s}, 1224 \mathrm{~m}, 1154 \mathrm{w}, 1113 \mathrm{~m}, 1094 \mathrm{~m}, 1054 \mathrm{w}, 1019 \mathrm{~m}, 956$ $\mathrm{s}, 879 \mathrm{~s}, 844 \mathrm{~m}, 803 \mathrm{~m}, 722 \mathrm{~s}, 566 \mathrm{~m} .4, \delta{ }^{1} \mathrm{H}: 1.05\left(18 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.32\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.73\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 5.70(\mathrm{~s}, 2 \mathrm{H},=\mathrm{CH}), 6.95(\mathrm{~m}$, $\mathrm{Ph}), 7.25(\mathrm{~m}, \mathrm{Ph}), 7.76(\mathrm{~m}, \mathrm{Ph}) . \delta^{13} \mathrm{C}: 25.5\left(\mathrm{t},{ }^{1} \mathrm{~J}=132.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $31.1\left(\mathrm{~s}\left(\mathrm{CH}_{3}\right)_{3}\right), 51.1\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right), 69.5\left(\mathrm{t},{ }^{1} J=148.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 110.1(\mathrm{dd}$, $\left.{ }^{1} J=177.7 \mathrm{~Hz},{ }^{2} J=7.2 \mathrm{~Hz},=C \mathrm{H}\right), 127.0,128.8,129.1,130.0,140.9$, $155.6\left(\mathrm{~s}, C \mathrm{Ph}_{3}\right) . \delta^{29} \mathrm{Si}:-66.6(\mathrm{~s})$.
 (12) Crystal data. 3, orthorhombic, space group Pnma, $a=18.5253$ (14) $\AA, b=14.110(2) \AA, c=8.9577(4) \AA, V=2341.5(3) \AA^{3}, Z=4, D_{c}=$ $1.131 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=872$, total unique data $1652\left(R_{\mathrm{i}}=4.54 \%\right)$, number of observations $[(F)>4 \sigma(F)] 1464, R=0.048, R_{w_{0}}=0.069 ; 4$, triclinic, space group $P 1, a=10.899$ (2) $\AA, b=12.6348$ (13) $\AA, c=13.9071$ (13) \AA, $\alpha=87.327(13)^{\circ}, \beta=67.854(8)^{\circ}, \gamma=67.663(11)^{\circ}, V=1630.2(4) \AA^{3}, Z$ $=2, D_{\mathrm{c}}=1.159 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=618$, total unique data $4248\left(R_{1}=\right.$ 4.23%), number of observations $[(F)>4 \sigma(F)] 3141, R=0.055, R_{\mathrm{w}}=$ 0.072 .

